Publications by authors named "L Riles"

has the capability of fermenting sugar to produce concentrations of ethanol that are toxic to most organisms. Other species also have a strong fermentative capacity, but some are specialized to low temperatures, whereas is the most thermotolerant. Although has been extensively used to study the genetic basis of ethanol tolerance, much less is known about temperature dependent ethanol tolerance.

View Article and Find Full Text PDF

Regulatory changes rapidly accumulate between species, and interspecific hybrids often misexpress genes. Hybrid misexpression, expression levels outside the range of both parental species, can result from cis- and trans-acting regulatory changes that interact abnormally in hybrids. Thus, misexpressed genes may contribute to hybrid sterility.

View Article and Find Full Text PDF

Both linkage and linkage disequilibrium mapping provide well-defined approaches to mapping quantitative trait alleles. However, alleles of small effect are particularly difficult to refine to individual genes and causative mutations. Quantitative noncomplementation provides a means of directly testing individual genes for quantitative trait alleles in a fixed genetic background.

View Article and Find Full Text PDF

Transcription factors play a key role in the regulation of cell cycle progression, yet many of the specific regulatory interactions that control cell cycle transcription are still unknown. To systematically identify new yeast cell cycle transcription factors, we used a quantitative flow cytometry assay to screen 268 transcription factor deletion strains for defects in cell cycle progression. Our results reveal that 20% of nonessential transcription factors have an impact on cell cycle progression, including several recently identified cyclin-dependent kinase (Cdk) targets, which have not previously been linked to cell cycle transcription.

View Article and Find Full Text PDF

Completing the annotation of a genome sequence requires identifying the regulatory sequences that control gene expression. To identify these sequences, we developed an algorithm that searches for short, conserved sequence motifs in the genomes of related species. The method is effective in finding motifs de novo and for refining known regulatory motifs in Saccharomyces cerevisiae.

View Article and Find Full Text PDF