Synaptotagmin-1 (Syt-1) self-assembles into ring-like oligomers, and genetic and biochemical evidence suggest that oligomerization is needed to clamp synaptic vesicles and stabilize them for Ca-evoked release. However, oligomerization has not yet been demonstrated on lipid bilayers or studied in quantitative biophysical terms. Here we utilize single-molecule imaging methods to monitor the assembly and disassembly of oligomeric clusters of Syt-1 on lipid bilayers in real-time.
View Article and Find Full Text PDFThe precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them.
View Article and Find Full Text PDFOver the past decades, advances in lipid nanotechnology have shown that self-assembled lipid structures providing ease of preparation, chemical stability, and biocompatibility represent a landmark on the development of multidisciplinary technologies. Lipid nanotubes (LNTs) are a unique class of lipid self-assembled structures, bearing unique properties such as high-aspect ratio, tunable diameter size, and precise molecular recognition. They can be obtained either by the action of external factors to already formed vesicles or spontaneously, the latter depending strongly on subtle molecular features.
View Article and Find Full Text PDFLight-driven modulation of neuronal activity at high spatial-temporal resolution is becoming of high interest in neuroscience. In addition to optogenetics, nongenetic membrane-targeted nanomachines that alter the electrical state of the neuronal membranes are in demand. Here, we engineered and characterized a photoswitchable conjugated compound (BV-1) that spontaneously partitions into the neuronal membrane and undergoes a charge transfer upon light stimulation.
View Article and Find Full Text PDF