Publications by authors named "L Ratie"

Huntington's disease is a dominantly inherited disorder characterized by the dysfunction and death of cortical and striatal neurons. Striatal degeneration in Huntington's disease is due, at least in part, to defective cortical signalling to the striatum. Although Huntington's disease generally manifests at the adult stage, mouse and neuroimaging studies of presymptomatic mutation carriers suggest that it may affect neurodevelopment.

View Article and Find Full Text PDF

Recent evidence has shown that even mild mutations in the Huntingtin gene that are associated with late-onset Huntington's disease (HD) disrupt various aspects of human neurodevelopment. To determine whether these seemingly subtle early defects affect adult neural function, we investigated neural circuit physiology in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express fewer glutamatergic receptors, and show sensorimotor deficits.

View Article and Find Full Text PDF

Context: In human, Sonic hedgehog (SHH) haploinsufficiency is the predominant cause of holoprosencephaly, a structural malformation of the forebrain midline characterized by phenotypic heterogeneity and incomplete penetrance. The NOTCH signaling pathway has recently been associated with holoprosencephaly in humans, but the precise mechanism involving NOTCH signaling during early brain development remains unknown.

Objective: The aim of this study was to evaluate the relationship between SHH and NOTCH signaling to determine the mechanism by which NOTCH dysfunction could cause midline malformations of the forebrain.

View Article and Find Full Text PDF

Unlabelled: Dmrt5 (Dmrta2) and Dmrt3 are key regulators of cortical patterning and progenitor proliferation and differentiation. In this study, we show an altered apical to intermediate progenitor transition, with a delay in SP neurogenesis and premature birth of Ctip2+ cortical neurons in Dmrt5-/- mice. In addition to the cortical progenitors, DMRT5 protein appears present in postmitotic subplate (SP) and marginal zone neurons together with some migrating cortical neurons.

View Article and Find Full Text PDF

Extreme microcephaly and rhombencephalosynapsis represent unusual pathological conditions, each of which occurs in isolation or in association with various other cerebral and or extracerebral anomalies. Unlike microcephaly for which several disease-causing genes have been identified with different modes of inheritance, the molecular bases of rhombencephalosynapsis remain unknown and rhombencephalosynapsis presents mainly as a sporadic condition consistent with de novo dominant variations. We report for the first time the association of extreme microcephaly with almost no sulcation and rhombencephalosynapsis in a fœtus for which comparative patient-parent exome sequencing strategy revealed a heterozygous de novo missense variant in the ADGRL2 gene.

View Article and Find Full Text PDF