Purpose: This study examined the effect of 3 and 6 weeks of intensity domain-based exercise training on kinetics changes and their relationship with indices of performance.
Methods: Eighty-four young healthy participants (42 M, 42 F) were randomly assigned to six groups (14 participants each, age and sex-matched) consisting of: continuous cycling in the (1) moderate (MOD)-, (2) lower heavy (HVY1)-, and (3) upper heavy-intensity (HVY2)- domain; interval cycling in the (4) severe-intensity domain (i.e.
Purpose: Different strategies for near-infrared spectroscopy (NIRS)-derived muscle oxidative capacity assessment have been reported. This study compared and evaluated (I) approaches for averaging trials; (II) NIRS signals and blood volume correction equations; (III) the assessment of vastus lateralis (VL) and tibialis anterior (TA) muscles in two fitness levels groups.
Methods: Thirty-six participants [18 chronically trained (CT: 14 males, 4 females) and 18 untrained (UT: 10 males, 8 females)] participated in this study.
Purpose: To determine in trained females and males i) the agreement between the gas exchange threshold (GET), lactate threshold 1 (LT1), and heart rate variability threshold 1 (HRVT1), as well as between the respiratory compensation point (RCP), lactate threshold 2 (LT2), and heart rate variability threshold 2 (HRVT2), and ii) the reproducibility of HRVT1 and HRVT2 during 2-min incremental step protocols.
Methods: Fifty-seven trained participants (24 females) completed a 2-min step incremental test to task failure. Nineteen participants (eight females) completed a second test to evaluate reproducibility.
Introduction: This study assessed the effect of individualized, domain-based exercise intensity prescription on changes in maximal oxygen uptake (V̇O 2max ) and submaximal thresholds.
Methods: Eighty-four young healthy participants (42 females, 42 males) were randomly assigned to six age, sex, and V̇O 2max -matched groups (14 participants each). Groups performed continuous cycling in the 1) moderate (MOD), 2) lower heavy (HVY1), and 3) upper heavy-intensity (HVY2) domain; interval cycling in the form of 4) high-intensity interval training (HIIT) in the severe-intensity domain, or 5) sprint-interval training (SIT) in the extreme-intensity domain; or no exercise for 6) control (CON).
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency.
View Article and Find Full Text PDF