We report the fabrication and characterization of a plasmonic metasurface comprising electrically-contacted sub-wavelength gold dipole nanoantennas, conformally coated by a thin hafnia film, an indium tin oxide layer and a backside mirror, forming metal-oxide-semiconductor (MOS) capacitors, for use as an electrically-tunable reflectarray or metasurface. By voltage biasing the nanoantennas through metallic connectors and leveraging the carrier refraction effect in the MOS capacitors, our measurements demonstrate phase control in reflection over a range of about 30°, with a constant magnitude of reflection coefficient of 0.5, and the absence of secondary lobes.
View Article and Find Full Text PDFRecent advancements in materials and metamaterials with strong, time-varying, nonlinear optical responses have spurred a surge of interest in time-varying photonics. This opens the door to novel optical phenomena including reciprocity breaking, frequency translation, and amplification that can be further optimized by improving the light-matter interaction. Although there has been recent interest in applying topology-based inverse design to this problem, we propose a novel approach in this article.
View Article and Find Full Text PDFThe carrier density profile in metal-oxide-semiconductor (MOS) capacitors is computed under gating using two classical models - conventional drift-diffusion (CDD) and density-gradient (DG) - and a self-consistent Schrödinger-Poisson (SP) quantum model. Once calibrated the DG model approximates well the SP model while being computationally more efficient. The carrier profiles are used in optical mode computations to determine the gated optical response of surface plasmons supported by waveguides incorporating MOS structures.
View Article and Find Full Text PDFPlasmonic metasurfaces are promising as enablers of nanoscale nonlinear optics and flat nonlinear optical components. Nonlinear optical responses of such metasurfaces are determined by the nonlinear optical properties of individual plasmonic meta-atoms. Unfortunately, no simple methods exist to determine the nonlinear optical properties (hyperpolarizabilities) of the meta-atoms hindering the design of nonlinear metasurfaces.
View Article and Find Full Text PDF