Publications by authors named "L Ramunno"

We report the fabrication and characterization of a plasmonic metasurface comprising electrically-contacted sub-wavelength gold dipole nanoantennas, conformally coated by a thin hafnia film, an indium tin oxide layer and a backside mirror, forming metal-oxide-semiconductor (MOS) capacitors, for use as an electrically-tunable reflectarray or metasurface. By voltage biasing the nanoantennas through metallic connectors and leveraging the carrier refraction effect in the MOS capacitors, our measurements demonstrate phase control in reflection over a range of about 30°, with a constant magnitude of reflection coefficient of 0.5, and the absence of secondary lobes.

View Article and Find Full Text PDF
Article Synopsis
  • Currently, intravascular optical coherence tomography (IV-OCT) is primarily used for imaging the structure of arterial plaques, but it lacks the ability to detect molecular changes in the endothelium, which could improve risk assessment for cardiovascular issues.
  • Researchers developed gold superclusters (AuSCs) that are designed to enhance IV-OCT by increasing light scattering and targeting specific molecules in the vascular system.
  • In tests with a rat model, these AuSCs successfully enabled molecular imaging of vascular inflammation by correlating the imaging signal with the severity of inflammation, demonstrating potential for earlier detection of cardiovascular risks.
View Article and Find Full Text PDF

Recent advancements in materials and metamaterials with strong, time-varying, nonlinear optical responses have spurred a surge of interest in time-varying photonics. This opens the door to novel optical phenomena including reciprocity breaking, frequency translation, and amplification that can be further optimized by improving the light-matter interaction. Although there has been recent interest in applying topology-based inverse design to this problem, we propose a novel approach in this article.

View Article and Find Full Text PDF

The carrier density profile in metal-oxide-semiconductor (MOS) capacitors is computed under gating using two classical models - conventional drift-diffusion (CDD) and density-gradient (DG) - and a self-consistent Schrödinger-Poisson (SP) quantum model. Once calibrated the DG model approximates well the SP model while being computationally more efficient. The carrier profiles are used in optical mode computations to determine the gated optical response of surface plasmons supported by waveguides incorporating MOS structures.

View Article and Find Full Text PDF

Plasmonic metasurfaces are promising as enablers of nanoscale nonlinear optics and flat nonlinear optical components. Nonlinear optical responses of such metasurfaces are determined by the nonlinear optical properties of individual plasmonic meta-atoms. Unfortunately, no simple methods exist to determine the nonlinear optical properties (hyperpolarizabilities) of the meta-atoms hindering the design of nonlinear metasurfaces.

View Article and Find Full Text PDF