Publications by authors named "L Ramagli"

Acute myeloid leukemia (AML) is sustained by a population of cancer stem cells (CSCs or cancer-initiating cell). The mechanisms underlying switches from CSCs to non-CSCs in vivo remain to be understood. We address this issue in AML from the aspect of epigenetics using genome-wide screening for DNA methylation and selected histone modifications.

View Article and Find Full Text PDF

Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes.

View Article and Find Full Text PDF

Microsatellites are short tandem repeats of deoxyribonucleic acid (DNA) sequences which are distributed throughout the genome. Tumors in patients with Lynch syndrome tend to accumulate mutations in microsatellites at a much higher rate than other sequences in the genome resulting in microsatellite instability (MSI). This is due to germline mutations in mismatch repair (MMR) genes.

View Article and Find Full Text PDF

Most hereditary nonpolyposis colorectal cancer (HNPCC) patients inherit a defective allele of a mismatch repair (MMR) gene, usually MLH1 or MSH2, resulting in high levels of microsatellite instability (MSI-H) in the tumors. Presence of MSI in the normal tissues of mutation carriers has been controversial. Here we directly compare MSI in the peripheral blood leukocyte (PBL) DNA of seven HNPCC patients carrying different types of pathogenic MMR mutations in MLH1 and MSH2 genes with the PBL DNA of normal age-matched controls and of patients with sporadic colorectal cancer (SCRC).

View Article and Find Full Text PDF

Background: The myotonic dystrophies (DM1, DM2) are the most common adult muscle diseases and are characterized by multisystem involvement. DM1 has been described in diverse populations, whereas DM2 seems to occur primarily in European Caucasians. Both are caused by the expression of expanded microsatellite repeats.

View Article and Find Full Text PDF