Impairment of hand motor function is a frequent consequence after a stroke and strongly determines the ability to regain a self-determined life. An influential research strategy for improving motor deficits is the combined application of behavioral training and non-invasive brain stimulation of the motor cortex (M1). However, a convincing clinical translation of the present stimulation strategies has not been achieved yet.
View Article and Find Full Text PDFBackground: Healthy older adults show a decrease in motor performance and motor learning capacity as well as in working memory (WM) performance. WM has been suggested to be involved in motor learning processes, such as sequence learning. Correlational evidence has shown the involvement of the frontoparietal network (FPN), a network underlying WM processes, in motor sequence learning.
View Article and Find Full Text PDFOscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.
View Article and Find Full Text PDFEur Neuropsychopharmacol
September 2021
Emotionally arousing experiences are retained very well as seen in posttraumatic stress disorder (PTSD). Various lines of evidence indicate that reactivation of these memories renders them labile which offers a potential time-window for intervention. We tested in non-human primates whether ketamine, administered during fear memory reactivation, affected passive (inhibitory) avoidance learning.
View Article and Find Full Text PDFExpert Rev Neurother
December 2020
Introduction: Cognitive impairments are one of the most common remaining symptoms after a stroke. The use of neurotechnologies to enhance cognitive performance is a rapidly emerging field with encouraging results.
Areas Covered: Here, the authors empirically review the respective literature and critically discuss the technologies that are currently most often used for cognitive enhancement in stroke patients, which are computerized cognitive training, virtual reality, noninvasive brain stimulation and brain-computer interfaces.