Scope: Recent data suggest that gut microbiota contributes to the regulation of host lipid metabolism. We report how fermentable dietary fructo-oligosaccharides (FOS) control hepatic steatosis induced by n-3 PUFA depletion, which leads to hepatic alterations similar to those observed in non-alcoholic fatty liver disease patients.
Methods And Results: C57Bl/6J mice fed an n-3 PUFA-depleted diet for 3 months were supplemented with FOS during the last 10 days of treatment.
The present review aims at highlighting the use of a recently developed medium-chain triacylglycerol:fish oil (MCT:FO) emulsion for the rapid and sustained enrichment of long-chain polyunsaturated ω-3 fatty acids in cell phospholipids. Preclinical in vitro, in vivo, and ex vivo experiments are briefly considered with emphasis on the changes in the fatty acid pattern of cell phospholipids in several organs, the partial correction of liver steatosis, and the cardiovascular modification of cationic and functional variables observed in ω-3-depleted rats examined 60-120 minutes after a bolus intravenous (IV) injection (1.0 mL) of the MCT:FO emulsion.
View Article and Find Full Text PDFSecond generation n3-PUFA-depleted rats represent a good animal model of metabolic syndrome as they display several features of the disease such as liver steatosis, visceral obesity and insulin resistance. The goal of our study was to investigate the influence of n3-PUFA deficiency on hepatic glycerol metabolism. Aquaglyceroporin 9 (AQP9) allows hepatic glycerol transport and consequently contributes to neoglucogenesis.
View Article and Find Full Text PDFAquaglyceroporin 7 (AQP7) is a glycerol transporter expressed in adipocytes. Its expression has been shown to be modulated in obesity. Metabolic syndrome is characterized by abdominal obesity, insulin resistance, dyslipidemia, and hypertension.
View Article and Find Full Text PDFPatients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA) ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF) versus a control diet (CT), which only differed in the PUFA content.
View Article and Find Full Text PDF