Using linear response theory within the random phase approximation, we investigate the propagation of sound in a uniform two dimensional (2D) Bose gas in the collisionless regime. We show that the sudden removal of a static density perturbation produces a damped oscillatory behavior revealing that sound can propagate also in the absence of collisions, due to mean-field interaction effects. We provide explicit results for the sound velocity and damping as a function of temperature, pointing out the crucial role played by Landau damping.
View Article and Find Full Text PDFWe study solitary waves of polarization (magnetic solitons) in a two-component Bose gas with slightly unequal repulsive intra- and interspin interactions. In experimentally relevant conditions we obtain an analytical solution which reveals that the width and the velocity of magnetic solitons are explicitly related to the spin healing length and the spin sound velocity of the Bose mixture, respectively. We calculate the profiles, the energy, and the effective mass of the solitons in the absence of external fields and investigate their oscillation in a harmonic trap where the oscillation period is calculated as a function of the oscillation amplitude.
View Article and Find Full Text PDFWe analyze theoretically the transport properties of a weakly interacting ultracold Bose gas enclosed in two reservoirs connected by a constriction. We assume that the transport of the superfluid part is hydrodynamic, and we describe the ballistic transport of the normal part using the Landauer-Büttiker formalism. Modeling the coupled evolution of the phase, atom number, and temperature mismatches between the reservoirs, we predict that Helmholtz (plasma) oscillations can be observed at nonzero temperatures below Tc.
View Article and Find Full Text PDFWe observe solitonic vortices in an atomic Bose-Einstein condensate (BEC) after free expansion. Clear signatures of the nature of such defects are the twisted planar density depletion around the vortex line, observed in absorption images, and the double dislocation in the interference pattern obtained through homodyne techniques. Both methods allow us to determine the sign of the quantized circulation.
View Article and Find Full Text PDFUsing Bogoliubov theory we calculate the excitation spectrum of a spinor Bose-Einstein condensed gas with an equal Rashba and Dresselhaus spin-orbit coupling in the stripe phase. The emergence of a double gapless band structure is pointed out as a key signature of Bose-Einstein condensation and of the spontaneous breaking of translational invariance symmetry. In the long wavelength limit the lower and upper branches exhibit, respectively, a clear spin and density nature.
View Article and Find Full Text PDF