Publications by authors named "L Pinna"

Despite recent treatment advances, non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide, and therefore it necessitates the exploration of new therapy options. One commonly shared feature of malignant cells is their ability to hijack metabolic pathways to confer survival or proliferation. In this study, we highlight the importance of the polyol pathway (PP) in NSCLC metabolism.

View Article and Find Full Text PDF

Healthcare services and products are rapidly changing due to the development of new technologies, offering relevant solutions to improve patient outcomes. Patient-Generated Health Data and knowledge-sharing across the European Union (EU) has a great potential of making healthcare provision more effective and efficient by putting the patient at the centre of the healthcare process. While such initiatives have been taken before, a uniting and overarching approach is still missing.

View Article and Find Full Text PDF
Article Synopsis
  • EMT is a process that helps cancer cells spread and become resistant to treatment, making it a big challenge in fighting cancer.
  • Researchers found that short-chain fatty acids like propionate can help stop this process in lung cancer cells, making them less aggressive.
  • Propionate not only helps lung cancer cells stick together but also reduces their ability to spread in mice, showing promise for new treatments in the future.
View Article and Find Full Text PDF

is the main causative agent of botulism in humans and animals. The ingestion of the botulinum neurotoxin, usually types C and D, has been shown to produce disease (neurological symptoms) in most botulism cases in cattle. We report an outbreak in Southern Sardinia that involved a livestock farm with 120 animals, 39 of which died.

View Article and Find Full Text PDF

We describe the detection of epizootic hemorrhagic disease virus (EHDV) serotype 8 in cattle farms in Sardinia and Sicily in October-November 2022. The virus has a direct origin in North Africa; its genome is identical (>99.9% nucleotide sequence identity) to EHDV serotype 8 strains detected in Tunisia in 2021.

View Article and Find Full Text PDF