Publications by authors named "L Pillette"

The utmost issue in Motor Imagery Brain-Computer Interfaces (MI-BCI) is the BCI poor performance known as 'BCI inefficiency'. Although past research has attempted to find a solution by investigating factors influencing users' MI-BCI performance, the issue persists. One of the factors that has been studied in relation to MI-BCI performance is gender.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examined how different presentation styles of feedback (FB) affected participants' ability to self-regulate brain activity during a motor imagery task, finding that clearer feedback increased performance.
  • * Results indicated that a transparent feedback (like a clenching virtual hand) improved performance compared to abstract feedback (like a pendulum), and a sense of agency played a significant role in this relationship.
View Article and Find Full Text PDF

Presence is an important aspect of user experience in virtual reality (VR). It corresponds to the illusion of being physically located in a virtual environment (VE). This feeling is usually measured through questionnaires that disrupt presence, are subjective and do not allow for real-time measurement.

View Article and Find Full Text PDF

Introduction: Strokes leave around 40% of survivors dependent in their activities of daily living, notably due to severe motor disabilities. Brain-computer interfaces (BCIs) have been shown to be efficiency for improving motor recovery after stroke, but this efficiency is still far from the level required to achieve the clinical breakthrough expected by both clinicians and patients. While technical levers of improvement have been identified (e.

View Article and Find Full Text PDF

We present and share a large database containing electroencephalographic signals from 87 human participants, collected during a single day of brain-computer interface (BCI) experiments, organized into 3 datasets (A, B, and C) that were all recorded using the same protocol: right and left hand motor imagery (MI). Each session contains 240 trials (120 per class), which represents more than 20,800 trials, or approximately 70 hours of recording time. It includes the performance of the associated BCI users, detailed information about the demographics, personality profile as well as some cognitive traits and the experimental instructions and codes (executed in the open-source platform OpenViBE).

View Article and Find Full Text PDF