Silicone-based breast implants are commonly used, but there are concerns about their long-term safety. While implantation results in the formation of a periprosthetic tissue that isolates the implant from the rest of the host body, silicone can leak and reach surrounding tissues. We combined histological analysis and gene expression profiling (RNA sequencing) of samples from human patients with silicone breast implants with different fillers (silicone or serum), surface topographies and/or shell rupture, and performed systematic cross-comparisons.
View Article and Find Full Text PDFCurrently, there are only few reports on water-soluble photoinitiating systems. In this study, a highly water-soluble organic dye i.e.
View Article and Find Full Text PDFThe current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2024
Thin films have been identified as an alternative approach for targeting sensitive site as drug delivery tool. In this work, the preparation of self-rolling thin films to form tubes for wound healing and easy placement (e.g.
View Article and Find Full Text PDFUnlabelled: Cells regulate their shape and metabolic activity in response to the mechano-chemical properties of their microenvironment. To elucidate the impact of matrix stiffness and ligand density on the bioenergetics of mesenchymal cells, we developed a nonequilibrium, active chemo-mechanical model that accounts for the mechanical energy of the cell and matrix, chemical energy from ATP hydrolysis, interfacial energy, and mechano-sensitive regulation of stress fiber assembly through signaling. By integrating the kinetics and energetics of these processes, we define the cell "metabolic potential" that, when minimized, provides testable predictions of cell contractility, shape, and ATP consumption.
View Article and Find Full Text PDF