Publications by authors named "L Pietranera"

Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology.

View Article and Find Full Text PDF

Hippocampal neuropathology is a recognized feature of the spontaneously hypertensive rat (SHR). The hippocampal alterations associate with cognitive impairment. We have shown that hippocampal abnormalities are reversed by 17β-estradiol, a steroid binding to intracellular receptors (estrogen receptor α and β subtypes) or the membrane-located G-protein coupled estradiol receptor.

View Article and Find Full Text PDF

It is known that spontaneously hypertensive rats (SHR) present a marked encephalopathy, targeting vulnerable regions such as the hippocampus. Abnormalities of the hippocampus of SHR include decreased neurogenesis in the dentate gyrus (DG), partial loss of neurons in the hilus of the DG, micro and astrogliosis and inflammation. It is also known that 17β-estradiol (E2) exert neuroprotective effects and prevent hippocampal abnormalities of SHR.

View Article and Find Full Text PDF

Worldwide, raised blood pressure is estimated to affect 35-40% of the adult population and is a main conditioning factor for cardiovascular diseases and stroke. Animal models of hypertension have provided great advances concerning the pathophysiology of human hypertension, as already shown for the deoxycorticosterone-salt treated rat, the Dahl-salt sensitive rat, the Zucker obese rat and the spontaneously hypertensive rat (SHR). SHR has been widely used to study abnormalities of the brain in chronic hypertension.

View Article and Find Full Text PDF

Damage observed in the hippocampus of the adult spontaneously hypertensive rat (SHR) resembles the neuropathology of mineralocorticoid-induced hypertension, supporting a similar endocrine dysfunction in both entities. In the present study, we tested the hypothesis that increased expression of the hippocampal mineralocorticoid receptor (MR) in SHR animals is associated with a prevalent expression of pro-inflammatory over anti-inflammatory factors. Accordingly, in the hippocampus, we measured mRNA expression and immunoreactivity of the MR and glucocorticoid receptor (GR) using a quantitative polymerase chain reaction and histochemistry.

View Article and Find Full Text PDF