Publications by authors named "L Perfetti"

The transition metal dichalcogenide 1T-TaS exhibits a Charge Density Wave (CDW) with in-plane chirality. Due to the rich phase diagram, the Ferro-Rotational Order (FRO) can be tuned by external stimuli. The FRO is studied by Angle-Resolved Photoelectron Spectroscopy (ARPES), Raman spectroscopy, and Selected Area Electron Diffraction (SAED).

View Article and Find Full Text PDF

High-quality 1T-TaS crystals are investigated by angle-resolved photoelectron spectroscopy, Raman spectroscopy, and low-energy electron diffraction. The Ferro-Rotational Order (FRO) of the charge density wave switches configuration at the transition between the commensurate and the nearly commensurate phase. This process requires samples without built-in or externally induced strain.

View Article and Find Full Text PDF

Although the field of geomatics has seen multiple technological advances in recent years which enabled new applications and simplified the consolidated ones, some tasks remain challenging, inefficient, and time- and cost-consuming. This is the case of accurate tridimensional surveys of narrow spaces. Static laser scanning is an accurate and reliable approach but impractical for extensive tunnel environments; on the other hand, portable laser scanning is time-effective and efficient but not very reliable without ground control constraints.

View Article and Find Full Text PDF

The ability to confine THz photons inside deep-subwavelength cavities promises a transformative impact for THz light engineering with metamaterials and for realizing ultrastrong light-matter coupling at the single emitter level. To that end, the most successful approach taken so far has relied on cavity architectures based on metals, for their ability to constrain the spread of electromagnetic fields and tailor geometrically their resonant behavior. Here, we experimentally demonstrate a comparatively high level of confinement by exploiting a plasmonic mechanism based on localized THz surface plasmon modes in bulk semiconductors.

View Article and Find Full Text PDF

Lead halide perovskites (LHPs) have emerged as an excellent class of semiconductors for next-generation solar cells and optoelectronic devices. Tailoring physical properties by fine-tuning the lattice structures has been explored in these materials by chemical composition or morphology. Nevertheless, its dynamic counterpart, phonon-driven ultrafast material control, as contemporarily harnessed for oxide perovskites, has not yet been established.

View Article and Find Full Text PDF