Publications by authors named "L Pelit"

Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the better-known indoor air pollutants, for which effective monitoring is important. The analysis of BTEX can be performed by different type of solid phase microextraction (SPME) fibers. This study presents a proposal for a low cost, convenient and environmentally friendly analytical method for the determination of BTEX in air samples using custom made SPME fibers.

View Article and Find Full Text PDF

Lung cancer (LC) is one of the most prevalent cancers with the highest fatality rate worldwide. Long noncoding RNAs (lncRNAs) are being considered potential new molecular targets for early diagnosis, follow-up, and individual treatment decisions in LC. Therefore, this study evaluated whether lncRNA expression levels obtained from exhaled breath condensate (EBC) samples play a role in the occurrence of metastasis in the diagnosis and follow-up of patients with advanced lung adenocarcinoma (LA).

View Article and Find Full Text PDF

This study deals with the development of an inexpensive and single-step sorbent manufacturing methodology for the analysis of air pollutants. Disposable carbon fibre sorbents were prepared in a few minutes using the electrothermal conditioning technique. The sorbent conditioning current and time were optimised to obtain the best extraction of benzene, toluene, ethylbenzene and xylenes (BTEX) from the air samples.

View Article and Find Full Text PDF

This paper represents the results of a case study investigating the development of a novel, simple, cost-effective, solventless and sensitive chromatographic method for the determination of volatile pesticides in aqueous samples by an electrothermally prepared pencil graphite (PG). In this study, PG were conditioned by passing a suitable direct current to activate PG by Joule effect. Conditioned PG was used for the extraction of Chlorpyrifos (CP), which is used as case study.

View Article and Find Full Text PDF

Volatile Organic Compounds (VOCs) are a large group of chemicals mostly found in indoor environments such as homes and workplaces. Long term exposure to certain VOCs can cause symptoms in some individuals and therefore, monitoring and controlling air quality can help better manage chronic respiratory diseases. In this study, we aimed to develop an easy-to-use, economical, in house needle trap-based methodology to detect certain VOCs to be used for public and occupational health.

View Article and Find Full Text PDF