ACS Appl Mater Interfaces
September 2024
The 2D Ruddlesden-Popper (RP) perovskites CsPbICl (Pb-based, = 1) and CsSnICl (Sn-based, = 1) stand out as unique and rare instances of entirely inorganic constituents within the more expansive category of organic/inorganic 2D perovskites. These materials have recently garnered significant attention for their strong UV-light responsiveness, exceptional thermal stability, and theoretically predicted ultrahigh carrier mobility. In this study, we synthesized Pb and Sn-based = 1 2D RP perovskite films covering millimeter-scale areas for the first time, utilizing a one-step chemical vapor deposition (CVD) method under atmospheric conditions.
View Article and Find Full Text PDFThe study of surface defects is one of the forefronts of halide perovskite research. In the nanoscale regime, where the surface-to-volume ratio is high, the surface plays a key role in determining the electronic properties of perovskites. Perovskite-inspired silver iodobismuthates are promising photovoltaic absorbers.
View Article and Find Full Text PDFThe long search for nontoxic alternatives to lead halide perovskites (LHPs) has shown that some compelling properties of LHPs, such as low effective masses of carriers, can only be attained in their closest Sn(II) and Ge(II) analogues, despite their tendency toward oxidation. Judicious choice of chemistry allowed formamidinium tin iodide (FASnI) to reach a power conversion efficiency of 14.81% in photovoltaic devices.
View Article and Find Full Text PDFLead halide perovskites open great prospects for optoelectronics and a wealth of potential applications in quantum optical and spin-based technologies. Precise knowledge of the fundamental optical and spin properties of charge-carrier complexes at the origin of their luminescence is crucial in view of the development of these applications. On nearly bulk Cesium-Lead-Bromide single perovskite nanocrystals, which are the test bench materials for next-generation devices as well as theoretical modeling, we perform low temperature magneto-optical spectroscopy to reveal their entire band-edge exciton fine structure and charge-complex binding energies.
View Article and Find Full Text PDF