Objective: Silica nanoparticles (SNPs) have been extensively studied and used in different dental applications to promote improved physicochemical properties, high substance loading efficiency, in addition to sustained delivery of substances for therapeutic or preventive purposes. Therefore, this study aimed to review the SNPs applications in nanomaterials and nanoformulations in dentistry, discussing their effect on physicochemical properties, biocompatibility and ability to nanocarry bioactive substances.
Data Resources: Literature searches were conducted on PubMed, Web of Science, and Scopus databases to identify studies examining the physicochemical and biological properties of dental materials and formulations containing SNPs.
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation.
View Article and Find Full Text PDFDeadenylase enzymes play a key role in mRNA degradation and RNA processing. In this chapter, we describe two activity assays for the quantitative biochemical analysis of deadenylase enzymes, which can easily be adapted for other nuclease enzymes. The assays use distinct principles of detection, which are based on differential annealing of a probe complementary to the substrate RNA or detection of adenosine monophosphate (AMP).
View Article and Find Full Text PDFThis study developed an experimental flowable composite incorporated with niobium pentoxide (NbO) combined or not with titanium dioxide co-doped with fluorine and nitrogen (NF_TiO) and evaluated the mechanical and antibacterial properties. The experimental flowable composite (TEGDMA + BisGMA 1:1 + 60%wt - inorganic filler - borosilicate 0.7 μm) was formulated according to the type and concentration of NbO and NF_TiO (0.
View Article and Find Full Text PDFAccurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex.
View Article and Find Full Text PDF