Publications by authors named "L Pasquardini"

Bio-nanomaterials are gaining increasing attention due to their renewable and eco-friendly characteristics. Among these, nanocrystalline cellulose (NCC) stands out as one of the most advanced materials for applications in food, healthcare, composite production, and beyond. In this study, NCC was successfully extracted from cotton-based textile waste using a combination of chemical and mechanical methods.

View Article and Find Full Text PDF

In light of the significant impact of climate change, it is imperative to identify effective solutions to reduce the environmental burdens of industrial production and to promote recycling strategies also for thermosetting polymers. In this work, the mechanical recycling of phenolic resins, obtained from industrial production scrap of plastic knobs for household appliances, was optimized. The feasibility of a partial substitution of virgin materials with recycled ones was investigated both at a laboratory and industrial scale.

View Article and Find Full Text PDF

In the recent years, the number of Point-Of-Care-Tests (POCTs) available for clinical diagnostic has steadily increased. POCTs provide a near-patient testing with the potential to generate a result quickly so that appropriate treatment can be implemented, leading to improved clinical outcomes compared to traditional laboratory testing. Technological advances, such as miniaturization of sensors and improved instrumentation, have revolutionized POCTs, enabling the development of smaller and more accurate devices.

View Article and Find Full Text PDF

Liquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers.

View Article and Find Full Text PDF

A new bioinformatic platform (APTERION) was used to design in a short time and with high specificity an aptamer for the detection of the spike protein, a structural protein of SARS-CoV-2 virus, responsible for the COVID-19 pandemic. The aptamer concentration on the carbon electrode surface was optimized using static contact angle and fluorescence method, while specificity was tested using differential pulse voltammetry (DPV) associated to carbon screen-printed electrodes. The data obtained demonstrated the good features of the aptamer which could be used to create a rapid method for the detection of SARS-CoV-2 virus.

View Article and Find Full Text PDF