Introduction: Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g.
View Article and Find Full Text PDFSingle-cell multiomics provides comprehensive insights into gene regulatory networks, cellular diversity, and temporal dynamics. Here, we introduce nanoSPLITS (nanodroplet SPlitting for Linked-multimodal Investigations of Trace Samples), an integrated platform that enables global profiling of the transcriptome and proteome from same single cells via RNA sequencing and mass spectrometry-based proteomics, respectively. Benchmarking of nanoSPLITS demonstrates high measurement precision with deep proteomic and transcriptomic profiling of single-cells.
View Article and Find Full Text PDFWe report the development of an open-source Python application that provides quantitative and qualitative information from deconvoluted liquid-chromatography top-down mass spectrometry (LC-TDMS) data sets. This simple-to-use program allows users to search masses-of-interest across multiple LC-TDMS runs and provides visualization of their ion intensities and elution characteristics while quantifying their abundances relative to one another. Focusing on proteoform-rich histone proteins from the green microalga , we were able to quantify proteoform abundances across different growth conditions and replicates in minutes instead of hours typically needed for manual spreadsheet-based analysis.
View Article and Find Full Text PDFProteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine.
View Article and Find Full Text PDFUnderstanding of how soil organic matter (SOM) chemistry is altered in a changing climate has advanced considerably; however, most SOM components remain unidentified, impeding the ability to characterize a major fraction of organic matter and predict what types of molecules, and from which sources, will persist in soil. We present a novel approach to better characterize SOM extracts by integrating information from three types of analyses, and we deploy this method to characterize decaying root-detritus soil microcosms subjected to either drought or normal conditions. To observe broad differences in composition, we employed direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR MS).
View Article and Find Full Text PDF