RNA has gained great interest for use in biomedical and therapeutic applications. This is due in part to RNA's ability to perform multiple functions, including the regulation of endogenously expressed genes. However, the ability of RNA based drugs to distinguish target diseased cells from healthy tissue remains challenging.
View Article and Find Full Text PDFThe targeted and conditional activation of pharmaceuticals is an increasingly important feature in modern personalized medicine. Nucleic acid nanoparticles show tremendous potential in this exploit due to their programmability and biocompatibility. Among the most powerful nucleic acid specific treatments is RNA interference-based therapeutics.
View Article and Find Full Text PDFRNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter.
View Article and Find Full Text PDFRNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science.
View Article and Find Full Text PDFDesigning self-assembling RNA ring structures based on known 3D structural elements connected via linker helices is a challenging task due to the immense number of motif combinations, many of which do not lead to ring-closure. We describe an in silico solution to this design problem by combinatorial assembly of RNA 3-way junctions, bulges, and kissing loops, and tabulating the cases that lead to ring formation. The solutions found are made available in the form of a web-accessible Ring Catalog.
View Article and Find Full Text PDF