Publications by authors named "L P Wakem"

The heme and its two axial ligands, His18 and Met80, play a central role in the folding/unfolding mechanism of cytochrome c. Because of the covalent heme attachment, His18 remains bound under typical denaturing conditions, while the more labile Met80 ligand is replaced by an alternate histidine ligand. To distinguish between the two possible non-native histidine ligands in horse cytochrome c, variants with a His26 to Gln or His33 to Asn substitution were prepared using a yeast expression system.

View Article and Find Full Text PDF

The pairing of two alpha-helices at opposite ends of the chain is a highly conserved structural motif found throughout the cytochrome c family of proteins. It has previously been shown that association of the N- and C-terminal helices is a critical early event in the folding process of horse cytochrome c and is responsible for the formation of a partially folded intermediate (INC). In order to gain further insight into the structural and energetic basis of helix packing interactions and their role in folding, we prepared a series of horse cytochrome c variants in which Leu94, a critical residue at the helix contact site, was replaced by Ile, Val, or Ala.

View Article and Find Full Text PDF

Direct evidence is presented in support of the longstanding but unproven hypothesis that B lymphocytes specific for self antigens (Ags) can be used in the immune response to foreign Ags. We show that the B cells in BALB/c mic responding early to pigeon cytochrome c (CYT) produce antibodies that recognize and bind the major antigenic site on mouse CYT with greater affinity than they bind pigeon CYT i.e.

View Article and Find Full Text PDF

Factors influencing the direct transformation of the yeast Saccharomyces cerevisiae with synthetic oligonucleotides were investigated by selecting for cyc1 transformants that contained at least partially functional iso-1-cytochrome c. Approximately 3 x 10(4) transformants, constituting 0.1% of the cells, were obtained by using 1 mg of oligonucleotide in the reaction mixture.

View Article and Find Full Text PDF

Cyc1 mutants of the yeast Saccharomyces cerevisiae were directly transformed with both sense and antisense oligonucleotides to examine the involvement of the two genomic DNA strands in transformation. Sense oligonucleotides yielded approximately 20-fold more transformants than antisense oligonucleotides. This differential effect was observed with oligonucleotides designed to make alterations at six different sites along the gene and was independent of the oligonucleotide sequence and length, number of mismatches and the host strain.

View Article and Find Full Text PDF