Background: Magnetic field markings are occasionally used at MRI sites to provide visual feedback of magnetic field strength at locations within the MRI scan room for safety purposes. In addition to magnetic field line markings, relative magnetic force, or ratio of magnetic to gravitational forces on an object, may be considered a useful complementary metric to quantify the risk associated with bringing objects containing ferromagnetic material into the magnetic field.
Purpose: To develop and validate methods for deriving useful relative magnetic-force measures including a simple force index for application to MRI safety.
Purpose: Magnetic resonance spectroscopic imaging (MRSI), under low-spatial resolution settings, often suffers signal contamination from neighboring voxels due to ringing artifacts. Spatial localization can be improved by constraining the point-spread-function (PSF). Here the effectiveness of the two-dimensional PSF-Choice technique in providing improved spatial localization for MRSI is demonstrated.
View Article and Find Full Text PDFUnlabelled: The main risks associated with magnetic resonance imaging (MRI) have been extensively reported and studied; for example, everyday objects may turn into projectiles, energy deposition can cause burns, varying fields can induce nerve stimulation, and loud noises can lead to auditory loss. The present review article is geared toward providing intuition about the physical mechanisms that give rise to these risks. On the one hand, excellent literature already exists on the practical aspect of risk management, with clinical workflow and recommendations.
View Article and Find Full Text PDFPurpose: To combine MRI, ultrasound, and computer science methodologies toward generating MRI contrast at the high frame rates of ultrasound, inside and even outside the MRI bore.
Methods: A small transducer, held onto the abdomen with an adhesive bandage, collected ultrasound signals during MRI. Based on these ultrasound signals and their correlations with MRI, a machine-learning algorithm created synthetic MR images at frame rates up to 100 per second.
Objective: This study aims to evaluate the applicability of using single-shot and multi-shot segmented diffusion-weighted imaging (DWI) techniques to support biopsy target localization in a cohort of targeted MRI-guided prostate biopsy patients.
Materials And Methods: Single-shot echo-planar diffusion-weighted imaging (SS-DWI) and multi-shot segmented (MS-DWI) were performed intra-procedurally on a 3Tesla system in a total of 35 men, who underwent in-bore prostate biopsy inside the scanner bore. Comparisons between SS-DWI and MS-DWI were performed with (in 16 men) and without (in 19 men) parallel coil acceleration (iPAT) for SS-DWI.