Publications by authors named "L P Palazzolo"

Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans. Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment planning. In this work, we investigated studies on CYP450s specificity over past twenty years, categorizing these studies into structure-based and ligand-based approaches.

View Article and Find Full Text PDF

The activity of sirtuin 1 (SIRT1, a member of the NAD-dependent deacetylases family) decreases during aging as NAD levels naturally decline, thus increasing the risk of several age-associated diseases. Several sirtuin-activating compounds (STACs) have been developed to counteract the age-associated reduction in SIRT1 activity, and some of them are currently under development in clinical trials. STACs induce SIRT1 activation, either through allosteric activation of the enzyme in the presence of NAD, or by increasing NAD levels by inhibiting its degradation or by supplying a key precursor in biosynthesis.

View Article and Find Full Text PDF

The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates.

View Article and Find Full Text PDF

Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL.

View Article and Find Full Text PDF

Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc.

View Article and Find Full Text PDF