Publications by authors named "L P Morera"

Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low photon emission of known luciferases, however, demands long exposure times that are prohibitive for imaging fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to image extremely photon-starved samples enabling subsecond exposures for timelapse and volumetric imaging.

View Article and Find Full Text PDF

The scientific and educational community is becoming increasingly aware of the impact of current academic working conditions on graduate students' mental health and how this is affecting scientific progress and ultimately society as a whole. Our study aimed to shed light on the work-related mental health issues affecting graduate students, providing a comprehensive research work including psychological and biological assessment. Our findings showed that a sizeable number of graduate student present anxiety, depression, or high burnout and that the time spent in academia plays an important role.

View Article and Find Full Text PDF

Background: The central analgesic tapentadol prolonged release (PR) has proven effective and generally well tolerated in a broad range of chronic pain conditions. Long-term data of its use are still scarce.

Objectives: To evaluate long-term effectiveness, tolerability, and safety of tapentadol PR in patients with severe chronic osteoarthritis (OA) knee pain or low back pain (LBP) who responded to tapentadol in 1 of 4 preceding 12-week phase 3b clinical trials.

View Article and Find Full Text PDF

In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration.

View Article and Find Full Text PDF