Canals are supramolecular complexes observed in the cell wall of Candida maltosa grown in the presence of hexadecane as a sole carbon source. Such structures were not observed in glucose-grown cells. Microscopic observations of cells stained with diaminobenzidine revealed the presence of oxidative enzymes in the canals.
View Article and Find Full Text PDFPhosphorus compounds are indispensable components of the Earth's biomass metabolized by all living organisms. Under excess of phosphorus compounds in the environment, microorganisms accumulate reserve phosphorus compounds that are used under phosphorus limitation. These compounds vary in their structure and also perform structural and regulatory functions in microbial cells.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2014
The role of exopolyphosphatase PPX1 in polyphosphate metabolism in yeasts has been studied in strains of Saccharomyces cerevisiae with inactivated PPX1 and PPN1 genes transformed by the expression vector carrying the yeast PPX1 gene. Exopolyphosphatase activity in transformant strains increased 90- and 40-fold compared to the ΔPPX1 and ΔPPN1 strains, respectively. The purified recombinant exopolyphosphatase PPX1 was similar to the PPX1 of wild strains in its substrate specificity and requirement for divalent metal cations.
View Article and Find Full Text PDFBiochemistry (Mosc)
June 2013
We have found that extracellular phosphomannan is the main phosphate reserve in the yeast Kuraishia capsulata, in contrast to other yeast species effectively absorbing Pi. Under nitrogen starvation, K. capsulata absorbed essentially all Pi from the medium containing 240 mM glucose, 2.
View Article and Find Full Text PDFBiochemistry (Mosc)
November 2010
Partially purified endopolyphosphatase from cytosol of the yeast Saccharomyces cerevisiae with inactivated genes PPX1 and PPN1 encoding exopolyphosphatases was obtained with ion-exchange and affinity chromatography. The enzyme activity was estimated by decrease of polyphosphate chain length determined by PAGE. The enzyme cleaved inorganic polyphosphate without the release of orthophosphate (P(i)) and was inhibited by heparin and insensitive to fluoride.
View Article and Find Full Text PDF