Publications by authors named "L P Good"

We determined the frequency, genotypes, phenotypes, and mobility of extended-spectrum β-lactamase (ESBL)-encoding genes in Enterobacteriaceae isolated from retail seafood products. Overall, 288 samples of fresh shrimps, catfish and seabass imported from Asia were collected from three supermarket chains in the UK (96 each). After enrichment in MacConkey broth supplemented with cefotaxime, total DNA was screened for the presence of CTX-M, SHV and TEM by real-time PCR.

View Article and Find Full Text PDF
Article Synopsis
  • Large language models (LLMs) like GPT-J-6B, Llama-3.1-8B, and Mistral-7B can learn chemical properties effectively through fine-tuning without specialized features.
  • Fine-tuning these models often outperforms traditional machine learning methods in simple classification tasks, with potential success in more complex problems depending on dataset size and question type.
  • The ease of converting datasets for LLM training and the effectiveness of small datasets in generating predictive models suggest that LLMs could significantly streamline experimental processes in chemical research.
View Article and Find Full Text PDF

BACKGROUNDInhibition of Bruton's tyrosine kinase with ibrutinib blocks the function of myeloid-derived suppressor cells (MDSC). The combination of ibrutinib and nivolumab was tested in patients with metastatic solid tumors.METHODSSixteen patients received ibrutinib 420 mg p.

View Article and Find Full Text PDF

Characterizing the mechanical properties of single colloids is a central problem in soft matter physics. It also plays a key role in cell biology through biopolymer condensates, which function as membraneless compartments. Such systems can also malfunction, leading to the onset of a number of diseases, including many neurodegenerative diseases; the functional and pathological condensates are commonly differentiated by their mechanical signature.

View Article and Find Full Text PDF

Biomolecular condensates help cells organise their content in space and time. Cells harbour a variety of condensate types with diverse composition and many are likely yet to be discovered. Here, we develop a methodology to predict the composition of biomolecular condensates.

View Article and Find Full Text PDF