Mutations in the human ectodysplasin-A (EDA) are responsible for the most common form of the ectodermal dysplasia and the defective orthologous gene in mice produces the tabby phenotype, suggesting its vital role in the development of hair, sweat glands and teeth. Among several EDA splice isoforms, the most common and the longest EDA splice isoforms, EDA-A1 and EDA-A2, differing by only two amino acids, activate NF-kappaB-promoted transcription by binding to distinct receptors, EDAR and XEDAR. The extent to which any particular isoform is sufficient for the formation of hair, sweat glands or teeth has remained unclear.
View Article and Find Full Text PDFMutations in ectodysplasin, the protein product of the EDA or ED1 gene, cause X-linked anhidrotic ectodermal dysplasia. From sixteen families we have identified thirteen mutations, of which nine were novel: a deletion of the entire exon 1, altered splicing site in intron 7 (IVS-2A-->G) and in intron 9 (IVS9+8 C-->G), deletion of 8 bp (1967-1974 nt), four missense mutations (G255C, G255D, W274G, C332Y) and nonsense mutation W274X. Previously identified and the novel mutations form four clusters: 1) at the junction of the transmembrane and extracellular domains, 2) at a putative protease recognition site, possibly affecting cleavage of ectodysplasin, 3) at the trimerizing collagen-like domain, and 4) at regions of high homology to tumor necrosis factor domains.
View Article and Find Full Text PDFWe report on a family with severe X-linked mental retardation (XLMR) and progressive, severe central nervous system deterioration. Three of the five affected males died of secondary complications before the age of 10 years and none have survived past the age of 10. These complications included swallowing dysfunction and gastroesophageal reflux with secondary recurrent respiratory infections.
View Article and Find Full Text PDFClinical and molecular studies are reported on a family with X-linked mental retardation (XLMR) in which there are eight affected males in three generations. Although the males have somatic manifestations, these are variable and in most cases do not allow clear distinction of affected and unaffected males. Affected males are shorter and have a smaller head circumference.
View Article and Find Full Text PDFWe reevaluated a family previously described as having nonspecific X-linked mental retardation (XLMR) by Snyder and Robinson [1969: Clin Pediatr 8:669-674] (MIM 309583). Clinical and DNA studies were conducted on 17 relatives, including 6 males with mild-to-moderate mental retardation, 3 carrier females, and 8 normal males. In contrast to the normal appearance and minimal clinical findings reported 22 years ago, affected males were found to have a characteristic set of clinical findings.
View Article and Find Full Text PDF