Imaging the internal architecture of fast-vibrating structures at micrometer scale and kilohertz frequencies poses great challenges for numerous applications, including the study of biological oscillators, mechanical testing of materials, and process engineering. Over the past decade, X-ray microtomography with retrospective gating has shown very promising advances in meeting these challenges. However, breakthroughs are still expected in acquisition and reconstruction procedures to keep improving the spatiotemporal resolution, and study the mechanics of fast-vibrating multiscale structures.
View Article and Find Full Text PDFHuman vocal folds are highly deformable non-linear oscillators. During phonation, they stretch up to 50% under the complex action of laryngeal muscles. Exploring the fluid/structure/acoustic interactions on a human-scale replica to study the role of the laryngeal muscles remains a challenge.
View Article and Find Full Text PDFHuman vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings.
View Article and Find Full Text PDFReconstruction of three-dimensional (3D) structure from experimental image acquisition (e.g., from micro computed tomography data) is very useful in composite material science.
View Article and Find Full Text PDF