Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFThe aim was to investigate the morphological, photosynthetic, and hydraulic physiological characteristics of different genotypes of under controlled cultivation conditions. Growth, conductance, and hydraulic conductivity of the root system of 16 genotypes were evaluated in Experiment 1 (November 2013). In Experiment 2 (December 2014), in addition to the previous characteristics, gas exchange, photochemical efficiency, leaf water potential, and leaf hydraulic conductivity were investigated in five genotypes.
View Article and Find Full Text PDFGenomics is an invaluable tool for conservation, particularly for endangered species impacted by wildlife trafficking. This study uses genomic data to provide new insights to aid conservation and management of endangered species, using as a case study the Yellow cardinal (), a bird endemic to southern South America severely affected by illegal trade and the transformation of its natural habitat. We explore population structure within the Yellow cardinal, delimiting management units and describing connectivity among them.
View Article and Find Full Text PDFBackground: The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3 natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3 NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions.
View Article and Find Full Text PDF