Background: Myostatin is a protein compound, structurally related to the transforming growth factor-beta protein, which plays a pivotal role in regulating muscle growth and extracellular matrix production. It exerts both profibrotic and antihypertrophic effects on vascular smooth muscle cells. Aim of the study was to explore the potential association between serum myostatin levels (sMSTN) and carotid-femoral pulse wave velocity (cf-PWV), carotid-radial pulse wave velocity (cr-PWV), and their ratio (PWVr), in a cohort of healthy adolescents.
View Article and Find Full Text PDFSerum myostatin (sMSTN) is a proteic compound that regulates skeletal muscle growth, adipogenesis, and production of extracellular matrix. Its relationship with functional and structural properties of the arterial wall is still understudied. We aimed at evaluating the association between sMSTN and carotid-femoral pulse wave velocity (cf-PWV), a measure of aortic stiffness, in a cohort of healthy male adolescents.
View Article and Find Full Text PDFThe innate immune system represents the host's first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes.
View Article and Find Full Text PDFBackground: Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear.
Methods: We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema.
The mouse monoclonal antibody (mAb) technology still represents a key source of reagents for research and clinical diagnosis, although it is relatively inefficient and expensive and therefore unsuitable for high-throughput production against a vast repertoire of antigens. In this article, we describe a protocol that combines the immunization of individual mice with complex mixtures of influenza virus strains and a microarray-based immunoassay procedure to perform a parallel screening against the viral antigens. The protocol involves testing the supernatants of somatic cell hybrids against a capture substratum containing an array of different antigens.
View Article and Find Full Text PDF