This large multicenter study of 37 magnetic resonance imaging scanners aimed at characterizing, for the first time, spatial profiles of inaccuracy (namely, Δ-profiles) in apparent diffusion coefficient (ADC) values with varying acquisition plan orientation and diffusion weighting gradient direction, using a statistical approach exploiting unsupervised clustering analysis. A diffusion-weighted imaging (DWI) protocol (b-value: 0-200-400-600-800-1000 s mm) with different combinations of acquisition plan orientation (axial/sagittal/coronal) and diffusion weighting gradient direction (anterior-posterior/left-right/feet-head) was acquired on a standard water phantom. For each acquisition setup, Δ-profiles along the 3 main orthogonal directions were characterized by fitting data with a second order polynomial function ().
View Article and Find Full Text PDFObjective: Magnetic resonance (MR) relaxometry is an absolute and reproducible quantitative method, compared with signal intensity for the evaluation of liver biliary function. This is obtainable by the T1 reduction rate (T1RR), as it carries a smaller systematic error than the pre/post contrast agent T1 measurement. We aimed to develop and test an MR T1 relaxometry tool tailored for the evaluation of liver T1RR after gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid administration on 1.
View Article and Find Full Text PDFPurpose: The purpose of this multicenter phantom study was to exploit an innovative approach, based on an extensive acquisition protocol and unsupervised clustering analysis, in order to assess any potential bias in apparent diffusion coefficient (ADC) estimation due to different scanner characteristics. Moreover, we aimed at assessing, for the first time, any effect of acquisition plan/phase encoding direction on ADC estimation.
Methods: Water phantom acquisitions were carried out on 39 scanners.
Radiat Prot Dosimetry
July 2020
We investigated the performances of two computed tomography (CT) systems produced by the same manufacturers (Somatom Flash and Edge Siemens) with different detector technologies (Ultrafast Ceramic and Stellar) and different generation of iterative reconstruction (IR) algorithms (SAFIRE and ADMIRE). A homemade phantom was scanned and the images were reconstructed with filtered back-projection (FBP) and IR algorithms. In terms of image quality, the performances of the systems were checked using the low-contrast detectability, evaluated by a Channelized Hotelling Observer (CHO), and the noise power spectrum (NPS).
View Article and Find Full Text PDFA quantitative evaluation of the performances of the deformable image registration (DIR) algorithm implemented in MIM-Maestro was performed using multiple similarity indices. Two phantoms, capable of mimicking different anatomical bending and tumor shrinking were built and computed tomography (CT) studies were acquired after applying different deformations. Three different contrast levels between internal structures were artificially created modifying the original CT values of one dataset.
View Article and Find Full Text PDF