Publications by authors named "L Newbold"

Article Synopsis
  • The study investigates how climate change factors, specifically reduced snow cover and shrub expansion, affect nutrient cycling in alpine grasslands, which are experiencing warming at twice the global average.
  • The combination of these factors significantly disrupts the seasonal coupling of plant and soil microbial nitrogen cycling, leading to substantial decreases in plant nitrogen uptake and soil microbial biomass during critical seasonal periods.
  • Overall, these disruptions hinder the ability of alpine ecosystems to retain nitrogen and maintain plant productivity, raising concerns for their resilience under ongoing climate change.
View Article and Find Full Text PDF

We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited.

View Article and Find Full Text PDF

This study reports on the effects of long-term exposure to the metals arsenic (As), cadmium (Cd) and the polycyclic aromatic hydrocarbon fluoranthene on the survival, growth, development and DNA methylation status of the earthworm . Exposures to the three chemicals were conducted over their whole juvenile developmental period from egg to adult. Significant effects on one or more measured endpoints were found for all three chemicals.

View Article and Find Full Text PDF

Microplastics (MP) are emerging contaminants with the capacity to bind and transport hydrophobic organic compounds of environmental concern, such as polybrominated diphenyl ethers (PBDEs). The aim of this study was to investigate the ingestion of nylon (polyamide) MP alone and when associated with PBDEs and their effects on Chironomus sancticaroli larvae survival and microbiome structure. Survival, PBDE uptake and microbial community composition were measured in fourth instar larvae exposed for 96 h to BDEs- 47, 99, 100 and 153 in the presence and absence of 1% w/w MP in sediment.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is affecting mountain ecosystems by reducing winter snow cover, causing earlier spring snowmelt, and leading to shrub expansion in alpine areas.
  • Research shows that changes in snow conditions impact soil microbial communities and function, with these effects lasting into summer.
  • The expansion of ericaceous shrubs alters these impacts, enhancing certain soil microbes while reducing soil respiration and nitrogen availability, indicating that vegetation shifts can influence soil responses to climate change in alpine regions.
View Article and Find Full Text PDF