The depletion of fossil fuel and the concerns for harmful emissions and global warming has instigated researchers to use alternative fuels. Hydrogen (H) and natural gas (NG) are attractive fuels for internal combustion engines. The dual-fuel combustion strategy is promising to reduce emissions with efficient engine operation.
View Article and Find Full Text PDFMetallic nanoparticles (NPs) manufactured by ecofriendly strategies have also received much interest because of their elastic scattering properties and performance in nanomaterials. Aluminium oxide nanomaterials stand out among nanomaterials due to their tremendous uses in ceramic products, fabrics, therapeutic agents, catalyst supports, sewage sludge, and biosensors. The current paper investigates the effect of the nanoparticle composition and layer sequential on the mechanical characteristics of jute (J)-hemp (H) incorporated with an aluminium oxide polymer composite.
View Article and Find Full Text PDFOne of the more enticing, ecologically responsible, as well as safe and sustainable methodologies is eco-friendly nanomaterial synthesis. Vegetation materials will be used as reductants instead of toxic substances for synthesising nanoparticles. The current study used Ruellia tuberosa (RT) leaf extract digest to synthesise FeO nanomaterials, which were then characterised using XRD.
View Article and Find Full Text PDFUncontrolled emissions, massive price increases, and other factors encourage searching for a suitable diesel engine fuel alternative. In its processed form, vegetable oil biodiesel is an appealing green alternative fuel for compression ignition engines. Vegetable oil esters have qualities comparable to those of standard diesel fuel.
View Article and Find Full Text PDFThe current work focuses on peanut shells and agricultural wastes richly in many nations subjected to pyrolysis treatment at various temperatures in the range of 500-800°C to determine the feasible physiochemical characteristics of the biochar. The biochars with the high surface area were employed to adsorb Pb (lead) ions, the heaviest pollutants in the water bodies. The raw material, biochar, and pyrolyzed biochar were characterized by SEM, FTIR, partial and elemental analysis, and BET tests.
View Article and Find Full Text PDF