Angew Chem Int Ed Engl
December 2024
Vibrational spectroscopy is a widely used technique for chemical characterizations across various analytical sciences. Its applications are increasingly extending to the analysis of complex samples such as biofluids, providing high-throughput molecular profiling. While powerful, the technique suffers from an inherent limitation: The overlap of absorption information across different spectral domains hinders the capacity to identify individual molecular substances contributing to measured signals.
View Article and Find Full Text PDFInfrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, offering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its potential in detecting health conditions, a large-scale analysis of a naturally heterogeneous potential patient population has not been attempted. Using a population-based cohort, here we analyze 5,184 blood plasma samples from 3,169 individuals using Fourier transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFThe health state of an individual is closely linked to the glycosylation patterns of his or her blood plasma proteins. However, obtaining this information requires cost- and time-efficient analytical methods. We put forward infrared spectroscopy, which allows label-free analysis of protein glycosylation but so far has only been applied to analysis of individual proteins.
View Article and Find Full Text PDFRecent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals.
View Article and Find Full Text PDFInfrared spectroscopy of liquid biopsies is a time- and cost-effective approach that may advance biomedical diagnostics. However, the molecular nature of disease-related changes of infrared molecular fingerprints (IMFs) remains poorly understood, impeding the method's applicability. Here we probe 148 human blood sera and reveal the origin of the variations in their IMFs.
View Article and Find Full Text PDF