The ability of rat liver submitochondrial particles to catalyze NAD+ hydrolysis with a transfer of ADP-ribose residues to protein membranes has been demonstrated ADP-ribosylation is directly dependent on NAD+ concentration upon saturation with 1 mM NAD+ and is inhibited by physiological compounds (e.g., ATP, 10 mM; nicotinamide, 10 mM); besides, it is an artificial acceptor of ADP-ribose, arginine methyl ester.
View Article and Find Full Text PDFUkr Biokhim Zh (1978)
February 1989
The submitochondrial particles (SMP, inverted inner membrane vesicles of mitochondria of the turned out vesicles in internal mitochondrial membranes) of the rat liver are characterized for their ability to incorporate [14C]citrate depending on the concentration of exogenic citrate, temperature and time of incubation. The rate of citrate incorporation into SMP does not depend on the addition of the oxidation substrate into the medium, however in the presence of malate and phosphate it is sharply activated. 1,2,3-benzene tricarboxylase (1,2,3-BTC) is an active inhibitor of the citrate transport into SMP.
View Article and Find Full Text PDFUkr Biokhim Zh (1978)
September 1982
Molecular weight of heavy chains of immunoglobulin G typical of cancer is studied immunoglobulin and may be responsible for manifestation of certain anomalous acid and peptide composition of this protein heavy chains as compared with immunoglobulin G in blood serum of healthy people. Immunochemical methods helped detecting an antigenic determinant (or determinants) which is arranged in the heavy chains of the studied immunoglobulin and may be responsible for manifestation of certain anomalous properties of cancer-typical immunoglobulin G molecules. A set of bromo-cyanogenic fragments differing from the spectrum of these fragments in the heavy chains of normal immunoglobulin G is formed following a specific chemical effect of bromo-cyanogen on the heavy chains of immunoglobulin G typical of cancer.
View Article and Find Full Text PDF