Publications by authors named "L N Marekov"

Transglutaminases (TGs) are a family of enzymes that catalyse the formation of isopeptide bonds between the γ-carboxamide groups of glutamine residues and the ε-amino groups of lysine residues leading to cross-linking reactions among proteins. Four members, TG1, TG2, TG3, and TG5, of the nine mammalian enzymes are expressed in the skin. TG1, TG3 and TG5 crosslinking properties are fundamental for cornified envelope assembly.

View Article and Find Full Text PDF

This unit describes a method for analyzing protein complexes by chemically cross-linking closely positioned amino acids. The cross-linked products are isolated by SDS-PAGE and the bands of interest are excised. Proteins in the excised gel piece are digested with trypsin and the resulting peptides recovered.

View Article and Find Full Text PDF

Residues 1-89 constitute the Asn- and Gln-rich segment of the Ure2p protein and produce the [URE3] prion of Saccharomyces cerevisiae by forming the core of intracellular Ure2p amyloid. We report the results of solid-state nuclear magnetic resonance (NMR) measurements that probe the molecular structure of amyloid fibrils formed by Ure2p1-89 in vitro. Data include measurements of intermolecular magnetic dipole-dipole couplings in samples that are 13C-labeled at specific sites and two-dimensional 15N-13C and 13C-13C NMR spectra of samples that are uniformly 15N- and 13C-labeled.

View Article and Find Full Text PDF

UL25 and UL17 are two essential minor capsid proteins of HSV-1, implicated in DNA packaging and capsid maturation. We used cryo-electron microscopy to examine their binding to capsids, whose architecture observes T = 16 icosahedral geometry. C-capsids (mature DNA-filled capsids) have an elongated two-domain molecule present at a unique, vertex-adjacent site that is not seen at other quasiequivalent sites or on unfilled capsids.

View Article and Find Full Text PDF

Reversible protein acetylation modulates higher-order chromatin structure and transcription activity of the genome. The reversible acetylation is executed by the intrinsic acetylase and deacetylase activities of co-regulators associated with the regulatory regions. Compounds capable of inhibiting deacetylase activity are a powerful tool for dissecting the role of protein acetylation in gene function.

View Article and Find Full Text PDF