Publications by authors named "L N Levina"

The synthesis of highly monodispersed InAs colloidal quantum dots (CQDs) is needed in InAs CQD-based optoelectronic devices. Because of the complexities of working with arsenic precursors such as tris-trimethylsilyl arsine ((TMSi)As) and tris-trimethylgermyl arsine ((TMGe)As), several attempts have been made to identify new candidates for synthesis; yet, to date, only the aforementioned two highly reactive precursors have led to excellent photodetector device performance. We begin the present study by investigating the mechanism, finding that the use of the cosurfactant dioctylamine plays a crucial role in producing monodispersed InAs populations.

View Article and Find Full Text PDF

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.

View Article and Find Full Text PDF

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers.

View Article and Find Full Text PDF

Colloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping.

View Article and Find Full Text PDF

III-V colloidal quantum dots (CQDs) are promising semiconducting materials for optoelectronic applications; however, their strong covalent character requires a distinct approach to surface management compared with widely investigated II-VI and IV-VI CQDs-dots, which by contrast are characterized by an ionic nature. Here we show stoichiometric reconstruction in InAs CQDs by ligand exchange. In particular, we find that indium-carboxylate ligands, which passivate as-synthesized InAs CQDs and are responsible for In-rich surfaces, can be replaced by anionic ligands such as thiols.

View Article and Find Full Text PDF