Environmental problems are among the most pressing issues in the modern world, including the shortage of clean drinking water partially caused by contamination from various industries and the excessive emission of CO primarily from the massive use of fossil fuels. Consequently, it is crucial to develop inexpensive, effective, and environmentally friendly methods for wastewater treatment and CO reduction, turning them into useful feedstocks. This study explores a unique method that addresses both challenges by utilizing ZnO, which is recognized as one of the most active semiconductors for photocatalysis, as well as a cost-effective electrocatalyst for the CO reduction reaction (CORR).
View Article and Find Full Text PDFInformation on vitamin C-ascorbic acid (AA)-content is important as it facilitates the provision of dietary advice and strategies for the prevention and treatment of conditions associated with AA deficiency or excess. The methods of determining AA content include chromatographic techniques, spectrophotometry, and electrochemical methods of analysis. In the present work, an electrochemical enzyme-free ascorbic acid sensor for a neutral medium has been developed.
View Article and Find Full Text PDFCurrently, significant progress is being made in the prevention, treatment and prognosis of many types of cancer, using biological markers to assess current physiological processes in the body, including risk assessment, differential diagnosis, screening, treatment determination and monitoring of disease progression. The interaction of protein coding gene CD44 with the corresponding ligands promotes the processes of invasion and migration in metastases. The study of new and rapid methods for the quantitative determination of the CD44 protein is essential for timely diagnosis and therapy.
View Article and Find Full Text PDFZinc oxide is a promising multifunctional material. The practical use of nano- and polycrystalline ZnO devices faces a serious problem of instability of electrical and luminescent characteristics, due to the adsorption of oxygen by the surface during aging. In this paper, the aging effect in ZnO films and nanorod arrays was studied.
View Article and Find Full Text PDF