Publications by authors named "L N Carenza"

Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.

View Article and Find Full Text PDF

We present a comprehensive numerical study of the phase behavior and dynamics of a three-dimensional active dumbbell system with attractive interactions. We demonstrate that attraction is essential for the system to exhibit nontrivial phases. We construct a detailed phase diagram by exploring the effects of the system's activity, density, and attraction strength.

View Article and Find Full Text PDF

We formulate a hydrodynamic theory of confluent epithelia: i.e. monolayers of epithelial cells adhering to each other without gaps.

View Article and Find Full Text PDF

Yield-stress materials, which require a sufficiently large forcing to flow, are currently ill-understood theoretically. To gain insight into their yielding transition, we study numerically the rheology of a suspension of deformable droplets in 2D. We show that the suspension displays yield-stress behavior, with droplets remaining motionless below a critical body-force.

View Article and Find Full Text PDF

Recent experimental observations have suggested that topological defects can facilitate the creation of sharp features in developing embryos. Whereas these observations echo established knowledge about the interplay between geometry and topology in two-dimensional passive liquid crystals, the role of activity has mostly remained unexplored. In this article we focus on deformable shells consisting of either polar or nematic active liquid crystals and demonstrate that activity renders the mechanical coupling between defects and curvature much more involved and versatile than previously thought.

View Article and Find Full Text PDF