Recently, tetrahydrocannabinol (THC) isomers and other semi-synthetic cannabinoids have been introduced into the consumer market as alternatives to botanical cannabis. To assess the prevalence of these potential new analytical targets, a liquid chromatography-tandem mass spectrometry confirmation method was developed for the quantitation of seven cannabinoid metabolites and the qualitative identification of four others in urine. The validated method was applied to authentic urine specimens that screened positive by immunoassay (50 ng/mL cutoff; n=1300).
View Article and Find Full Text PDFThe advent of advanced robotic platforms and workflow automation tools has revolutionized the landscape of biological research, offering unprecedented levels of precision, reproducibility, and versatility in experimental design. In this work, we present an automated and modular workflow for exploring cell behavior in two-dimensional culture systems. By integrating the BioAssemblyBot (BAB) robotic platform and the BioApps™ workflow automater with live-cell fluorescence microscopy, our workflow facilitates execution and analysis of migration and proliferation assays.
View Article and Find Full Text PDFBiomarkers enable objective monitoring of a given cell or state in a biological system and are widely used in research, biomanufacturing, and clinical practice. However, identifying appropriate biomarkers that are both robustly measurable and capture a state accurately remains challenging. We present a framework for biomarker identification based upon observability guided sensor selection.
View Article and Find Full Text PDF