Publications by authors named "L Mugnier"

Article Synopsis
  • Optical aberrations in telescopes prevent them from achieving their best possible clarity, but these can be corrected using deformable mirrors guided by real-time data about the aberrations from images.
  • Current methods for detecting these aberrations depend on potentially flawed physical models, which can hinder the correction process.
  • This study proposes a new approach using model-free reinforcement learning to improve the estimation and correction of aberrations using phase diversity images, showing effective performance even under various conditions and noise levels.
View Article and Find Full Text PDF

The objective of this study was to improve the solubility and inhibit the crystallisation during the gastric-to-intestinal transfer of Erlotinib (ERL), a small molecule kinase inhibitor (smKI) compound class, which is classified as class II drug in the Biopharmaceutical Classification System (BCS). A screening approach combining different parameters (solubility in aqueous media, inhibitory effect of drug crystallisation from supersaturated drug solutions) was applied to selected polymers for the development of solid amorphous dispersions of ERL. ERL solid amorphous dispersions formulations were then prepared with 3 different polymers (Soluplus®, HPMC-AS-L, HPMC-AS-H) at a fixed drug: polymer ratio (1:4) by two different production methods (spray drying and hot melt extrusion).

View Article and Find Full Text PDF

Second harmonic generation (SHG) imaging microscopy of thick biological tissues is affected by the presence of aberrations and scattering within the sample. Moreover, additional problems, such as uncontrolled movements, appear when imaging . Deconvolution methods can be used to overcome these limitations under some conditions.

View Article and Find Full Text PDF

Coupled slope and scintillation detection and ranging (CO-SLIDAR) is a very promising technique for the metrology of near ground 2 profiles. It exploits both phase and scintillation measurements obtained with a dedicated wavefront sensor and allows profiling on the full line of sight between pupil and sources. This technique is applied to an associated instrument based on a mid-IR Shack-Hartmann wavefront sensor coupled to a 0.

View Article and Find Full Text PDF

Effective and accurate in vivo diagnosis of retinal pathologies requires high performance imaging devices, combining a large field of view and the ability to discriminate the ballistic signal from the diffuse background in order to provide a highly contrasted image of the retinal structures. Here, we have implemented the partial-field illumination ophthalmoscope, a patterned illumination modality, integrated to a high pixel rate adaptive optics full-field microscope. This non-invasive technique enables us to mitigate the low signal-to-noise ratio, intrinsic of full-field ophthalmoscopes, by partially illuminating the retina with complementary patterns to reconstruct a wide-field image.

View Article and Find Full Text PDF