The development of in vitro models that recapitulate critical liver functions is essential for accurate assessments of drug toxicity. Although liver organoids can be used for drug discovery and toxicology, they are limited by (i) the lack of expression and activity of xenobiotic-metabolizing enzymes, and (ii) the difficulty of mimicking non-alcoholic fatty liver disease (NAFLD, which influences the expression of these enzymes) in vitro. Here, we generated three-dimensional multi-cell-type liver organoids (hereafter "HML organoids") from HepaRG cells, primary human macrophages, and hepatic-stellate-cell-derived LX-2 cells.
View Article and Find Full Text PDF3D tissue models recapitulating human physiology are important for fundamental biomedical research, and they hold promise to become a new tool in drug development. An integrated and defined microvasculature in 3D tissue models is necessary for optimal cell functions. However, conventional bioprinting only allows the fabrication of hydrogel scaffolds containing vessel-like structures with large diameters (>100 µm) and simple geometries.
View Article and Find Full Text PDF