Stacked atomically thin transition metal dichalcogenides (TMDs) exhibit fundamentally new physical properties compared to those of the individual layers. The twist angle between the layers plays a crucial role in tuning these properties. Having a tool that provides high-resolution, large area mapping of the twist angle, would be of great importance in the characterization of such 2D structures.
View Article and Find Full Text PDFWe used nonlinear laser scanning optical microscopy to study atomically thin transition metal dichalcogenides (TMDs) and revealed, with unprecedented resolution, the orientational distribution of armchair directions and their degree of organization in the two-dimensional (2D) crystal lattice. In particular, we carried out polarization-resolved second-harmonic generation (PSHG) imaging for monolayer WS and obtained, with high-precision, the orientation of the main crystallographic axis (armchair orientation) for each individual 120 × 120 nm pixel of the 2D crystal area. Such nanoscale resolution was realized by fitting the experimental PSHG images, obtained with sub-micron precision, to a new generalized theoretical model that accounts for the nonlinear optical properties of TMDs.
View Article and Find Full Text PDFThe simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, X-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders.
View Article and Find Full Text PDFThe technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications.
View Article and Find Full Text PDF