Interneurons in the ventral spinal cord are essential for coordinated locomotion in vertebrates. During embryogenesis, the V0 and V1 classes of ventral interneurons are defined by expression of the homeodomain transcription factors Evx1/2 and En1, respectively. In this study, we show that Evx1 V0 interneurons are locally projecting intersegmental commissural neurons.
View Article and Find Full Text PDFSpinal interneurons help to coordinate motor behavior. During spinal cord development, distinct classes of interneurons are generated from progenitor cells located at different positions within the ventral neural tube. V0 and V1 interneurons derive from adjacent progenitor domains that are distinguished by expression of the homeodomain proteins Dbx1 and Dbx2.
View Article and Find Full Text PDFIn mammalian embryos, myogenic precursor cells emigrate from the ventral lip of the dermomyotome and colonize the limbs, tongue and diaphragm where they differentiate and form skeletal muscle. Previous studies have shown that Pax3, together with the c-Met receptor tyrosine kinase and its ligand Scatter Factor (SF) are necessary for the migration of hypaxial muscle precursors in mice. Lbx1 and Pax3 are co-expressed in all migrating hypaxial muscle precursors, raising the possibility that Lbx1 regulates their migration.
View Article and Find Full Text PDF