Publications by authors named "L Modenese"

Resource-intensive motion capture (mocap) systems challenge predictive deep learning applications, requiring large and diverse datasets. We tackled this by modifying generative adversarial networks (GANs) into conditional GANs (cGANs) that can generate diverse mocap data, including 15 marker trajectories, lower limb joint angles, and 3D ground reaction forces (GRFs), based on specified subject and gait characteristics. The cGAN comprised 1) an encoder compressing mocap data to a latent vector, 2) a decoder reconstructing the mocap data from the latent vector with specific conditions and 3) a discriminator distinguishing random vectors with conditions from encoded latent vectors with conditions.

View Article and Find Full Text PDF

The ultimate neural signal for muscle control is the neural drive sent from the spinal cord to muscles. This neural signal comprises the ensemble of action potentials discharged by the active spinal motoneurons, which is transmitted to the innervated muscle fibres to generate forces. Accurately estimating the neural drive to muscles in humans in vivo is challenging since it requires the identification of the activity of a sample of motor units (MUs) that is representative of the active MU population.

View Article and Find Full Text PDF

The computational simulation of human voluntary muscle contraction is possible with EMG-driven Hill-type models of whole muscles. Despite impactful applications in numerous fields, the neuromechanical information and the physiological accuracy such models provide remain limited because of multiscale simplifications that limit comprehensive description of muscle internal dynamics during contraction. We addressed this limitation by developing a novel motoneuron-driven neuromuscular model, that describes the force-generating dynamics of a population of individual motor units, each of which was described with a Hill-type actuator and controlled by a dedicated experimentally derived motoneuronal control.

View Article and Find Full Text PDF

The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system.

View Article and Find Full Text PDF

The spinal motor neurons are the only neural cells whose individual activity can be noninvasively identified. This is usually done using grids of surface electromyographic (EMG) electrodes and source separation algorithms; an approach called EMG decomposition. In this study, we combined computational and experimental analyses to assess how the design parameters of grids of electrodes influence the number and the properties of the identified motor units.

View Article and Find Full Text PDF