Introduction: The outcome of thalamic deep brain stimulation (DBS) for essential tremor (ET) varies, probably due to the difficulty in identifying the optimal target for DBS placement. Recent approaches compared the clinical response with a connectivity-based segmentation of the target area. However, studies are contradictory by indicating the connectivity to the primary motor cortex (M1) or to the premotor/supplementary motor cortex (SMA) to be therapeutically relevant.
View Article and Find Full Text PDFDeep brain stimulation (DBS) with electric field steering may avoid areas responsible for side effects. This prospective randomized cross-over trial compared omnidirectional (OS) and directional (DS) subthalamic DBS in 19 patients. Electromyographically measured rigidity was the primary outcome.
View Article and Find Full Text PDFBackground: Orthostatic tremor (OT) is a rare movement disorder characterized by a feeling of unsteadiness and a high-frequency tremor in the legs (13-18 Hz) relieved by sitting or walking.
Objectives: The aims were to study the brain electrophysiology captured chronically in a person with medication-refractory OT while standing and walking and in the semi-recumbent position using bilateral ventral intermedius nucleus deep brain stimulation (DBS) (Medtronic Percept PC) and to describe the clinical use of closed-loop DBS.
Methods: A sensing survey was used to capture baseline local field potentials (LFPs) while standing.
Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms.
View Article and Find Full Text PDFBackground: The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections.
Methods: Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores.