Publications by authors named "L Mi"

The mycotoxin tenuazonic acid (TeA) inhibits photosynthesis and is expected to be developed as a bioherbicide to control Ageratina adenophora that is one of the most serious invasive alien plants in China. New leaves sprouting from A. adenophora at low temperatures (LT) in early spring are less sensitive to TeA compared to those growing in summer.

View Article and Find Full Text PDF

Background: Heat stroke, a severe heat illness with organ damage, is a major cause of cause irreparable organ damage and higher death rates among military persons and athletes.

Objectives: To study the changes in blood lactate (Lac) levels and lactate clearance rate (LCR) in athletes with heat illness of varying degrees after high-intensity exercise and to evaluate their prognostic value.

Material And Methods: In present study, acute care unit admitted 36 heat sickness patients following high-intensity exercise from December 2019 to July 2024, with comprehensive medical records, for retrospective study.

View Article and Find Full Text PDF

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF