Publications by authors named "L Messika-Zeitoun"

The anti-Müllerian hormone type II (AMHRII) receptor is the primary receptor for anti-Müllerian hormone (AMH), a protein produced by Sertoli cells and responsible for the regression of the Müllerian duct in males. AMHRII is a membrane protein containing an N-terminal extracellular domain (ECD) that binds AMH, a transmembrane domain, and an intracellular domain with serine/threonine kinase activity. Mutations in the AMHRII gene lead to persistent Müllerian duct syndrome in human males.

View Article and Find Full Text PDF

Anti-Müllerian hormone belongs to the TGFbeta family whose members exert their effects by signaling through two related serine/threonine kinase receptors. Mutations of the anti-Müllerian hormone type II receptor occur naturally, causing the persistent Müllerian duct syndrome. In a family with two members with persistent Müllerian duct syndrome and one normal sibling, we detected two novel mutations of the anti-Müllerian hormone type II receptor gene.

View Article and Find Full Text PDF

The persistent Müllerian duct syndrome, characterized by the presence of uterus and tubes in otherwise normally masculinized 46,XY males, is a familial autosomal recessive disorder due to defects of synthesis or action of anti-Müllerian hormone. We have performed molecular studies in a total of 38 families and we have identified the basis of the condition, namely 16 anti-Müllerian hormone and 16 anti-Müllerian hormone receptor mutations, in 32 families.

View Article and Find Full Text PDF

The persistent müllerian duct syndrome, characterized by the lack of regression of müllerian derivatives, uterus and tubes in otherwise normally masculinized males, is a genetically transmitted disorder implicating either anti-müllerian hormone (AMH), a member of the transforming growth factor-beta superfamily, or its type II receptor, a serine/threonine kinase homologous to the receptors of other members of the transforming growth factor-beta superfamily. We have now performed molecular studies in a total of 38 families. The basis of the condition, namely 16 AMH and 16 AMH receptor mutations, was identified in 32 families.

View Article and Find Full Text PDF