Publications by authors named "L Megias-Megias"

Manganese is essential for normal development and activity of the nervous tissue. Mn2+ ions are involved in protein synthesis and may prevent free radical damage. Since it is now established that alcohol degradation may produce free radicals, we studied the effect of Mn2+ on ethanol induced alterations using cultured nerve cells as an experimental model of the central nervous system.

View Article and Find Full Text PDF

The effect of prenatal alcohol exposure on nerve cell development was investigated in neurons and glial cells cultured from fetal rat brain. Neurons were grown for one week from two week-old cortical brain cells and glial cells were cultured during four weeks from new born cortical brain cells. Two situations were examined: maternal alcohol treatment before and during pregnancy and alcohol exposure only until the beginning of pregnancy.

View Article and Find Full Text PDF

The effect of maternal alcohol exposure on nerve cell development was investigated in neurons and glial cells cultured from foetal rat brain. Neurons were grown for one week from two-week-old cortical brain cells and glial cells were cultured for four weeks from newborn cortical brain cells. Two types of maternal alcohol treatment were performed; either before and during pregnancy or only until the beginning of pregnancy.

View Article and Find Full Text PDF

The effects of physiological concentrations of K+ on Mn2+ accumulation were compared in rat glial cells and neurons in culture. Increasing the K+ concentration in growth medium increased significantly the Mn2+ level of the cultivated cells, with glial cells more affected than neurons. Ethanol markedly increased the Mn2+ accumulation within glia but not within neurons while ouabain caused inhibition of Mn2+ uptake with neurons and glial cells.

View Article and Find Full Text PDF