Malignant growth relies on rapid protein synthesis frequently leading to endoplasmic reticulum (ER) overload and accumulation of unfolded or misfolded protein in this cellular compartment. In the ER, protein homeostasis is finely regulated by a mechanism called the unfolded protein response (UPR), involving the activation of signalization pathways mediated by three transmembrane proteins, namely PERK, IRE1 and ATF6. IRE1 endoribonuclease activation leads in particular to the splicing of the cytosolic mRNA encoding the key UPR-specific transcription factor XBP1s.
View Article and Find Full Text PDFThe unfolded protein response (UPR) is an evolutionarily conserved adaptive signaling pathway triggered by a stress of the endoplasmic reticulum (ER) lumen compartment, which is initiated by the accumulation of unfolded proteins. This response, mediated by three sensors-Inositol Requiring Enzyme 1 (IRE1), Activating Transcription Factor 6 (ATF6), and Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK)-allows restoring protein homeostasis and maintaining cell survival. UPR represents a major cytoprotective signaling network for cancer cells, which frequently experience disturbed proteostasis owing to their rapid proliferation in an usually unfavorable microenvironment.
View Article and Find Full Text PDFDuring carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses.
View Article and Find Full Text PDF1. Although fattening dual-purpose types or male layer hybrid chickens appears more ethical than the common practice of culling day-old male layer chicks, the lower feed efficiency of these birds raises concerns. Replacing feed ingredients that compete with food production by those of lower value for human nutrition would be beneficial.
View Article and Find Full Text PDFDelta-like 4 (DLL4) is a pivotal endothelium specific Notch ligand that has been shown to function as a regulating factor during physiological and pathological angiogenesis. DLL4 functions as a negative regulator of angiogenic branching and sprouting. Interestingly, is with one of the few examples of haplo-insufficiency, resulting in obvious vascular abnormalities and in embryonic lethality.
View Article and Find Full Text PDF